Face Recognition by Fisher and Scatter Linear Discriminant Analysis
نویسندگان
چکیده
Fisher linear discriminant analysis (FLDA) based on variance ratio is compared with scatter linear discriminant (SLDA) analysis based on determinant ratio. It is shown that each optimal FLDA data model is optimal SLDA data model but not opposite. The novel algorithm 2SS4LDA (two singular subspaces for LDA) is presented using two singular value decompositions applied directly to normalized multiclass input data matrix and normalized class means data matrix. It is controlled by two singular subspace dimension parameters q and r, respectively. It appears in face recognition experiments on the union of MPEG-7, Altkom, and Feret facial databases that 2SS4LDA reaches about 94% person identification rate and about 0.21 average normalized mean retrieval rank. The best face recognition performance measures are achieved for those combinations of q,r values for which the variance ratio is close to its maximum, too. None such correlation is observed for SLDA separation measure. Reference: VIL03-D326 Author: M.Z. Bober, K. Kucharski and W. Skarbek Date: November 2003 Rev. A © 2003 Mitsubishi Electric ITE B.V. Visual Information Laboratory. All rights reserved. Face Recognition by Fisher and Scatter Linear Discriminant Analysis MirosÃlaw Bober, Krzysztof Kucharski, and WÃladysà law Skarbek 1 Visual Information Laboratory, Mitsubishi Electric, Guilford, UK 2 Faculty of Electronics and Information Technology Warsaw University of Technology, Poland [email protected] Abstract. Fisher linear discriminant analysis (FLDA) based on variance ratio is compared with scatter linear discriminant (SLDA) analysis based on determinant ratio. It is shown that each optimal FLDA data model is optimal SLDA data model but not opposite. The novel algorithm 2SS4LDA (two singular subspaces for LDA) is presented using two singular value decompositions applied directly to normalized multiclass input data matrix and normalized class means data matrix. It is controlled by two singular subspace dimension parameters q and r, respectively. It appears in face recognition experiments on the union of MPEG7, Altkom, and Feret facial databases that 2SS4LDA reaches about 94% for the person identification rate and about 0.21 for the average normalized mean retrieval rank. The best face recognition performance measures are achieved for those combinations of q, r values for which the variance ratio is close to its maximum, too. None such correlation is observed for SLDA separation measure. Fisher linear discriminant analysis (FLDA) based on variance ratio is compared with scatter linear discriminant (SLDA) analysis based on determinant ratio. It is shown that each optimal FLDA data model is optimal SLDA data model but not opposite. The novel algorithm 2SS4LDA (two singular subspaces for LDA) is presented using two singular value decompositions applied directly to normalized multiclass input data matrix and normalized class means data matrix. It is controlled by two singular subspace dimension parameters q and r, respectively. It appears in face recognition experiments on the union of MPEG7, Altkom, and Feret facial databases that 2SS4LDA reaches about 94% for the person identification rate and about 0.21 for the average normalized mean retrieval rank. The best face recognition performance measures are achieved for those combinations of q, r values for which the variance ratio is close to its maximum, too. None such correlation is observed for SLDA separation measure.
منابع مشابه
Face recognition using kernel scatter-difference-based discriminant analysis
There are two fundamental problems with the Fisher linear discriminant analysis for face recognition. One is the singularity problem of the within-class scatter matrix due to small training sample size. The other is that it cannot efficiently describe complex nonlinear variations of face images because of its linear property. In this letter, a kernel scatter-difference-based discriminant analys...
متن کاملRapid and Brief Communication Alternative linear discriminant classi$er
Fisher linear discriminant analysis (FLDA) $nds a set of optimal discriminating vectors by maximizing Fisher criterion, i.e., the ratio of the between scatter to the within scatter. One of its major disadvantages is that the number of its discriminating vectors capable to be found is bounded from above by C-1 for C-class problem. In this paper for binary-class problem, we propose alternative FL...
متن کاملMaking FLDA applicable to face recognition with one sample per person
In face recognition, the Fisherface approach based on Fisher linear discriminant analysis (FLDA) has obtained some success. However, FLDA fails when each person just has one training face sample available because of nonexistence of the intra-class scatter. In this paper, we propose to partition each face image into a set of sub-images with the same dimensionality, therefore obtaining multiple t...
متن کاملMembership-Degree Preserving Discriminant Analysis with Applications to Face Recognition
In pattern recognition, feature extraction techniques have been widely employed to reduce the dimensionality of high-dimensional data. In this paper, we propose a novel feature extraction algorithm called membership-degree preserving discriminant analysis (MPDA) based on the fisher criterion and fuzzy set theory for face recognition. In the proposed algorithm, the membership degree of each samp...
متن کاملFeature extraction using fuzzy inverse FDA
This paper proposes a new method of feature extraction and recognition, namely, the fuzzy inverse Fisher discriminant analysis (FIFDA) based on the inverse Fisher discriminant criterion and fuzzy set theory. In the proposed method, a membership degree matrix is calculated using FKNN, then the membership degree is incorporated into the definition of the between-class scatter matrix and withinExp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003